RED ESCUELA.: Algebra | Historial
WikiEscuela » Algebra

WikiEscuela.Algebra Historia

Oculta ediciones menores - Muestra los cambios de salida

Línea añadida 2:
(:description Descripción general sobre el álgebra y su historia.:)
Líneas cambiada 6-40 desde:
Historia del Algebra
para
%color='#990000' define=c %

>>frame text-align='justify'<<
(:table border=0 align=center cellpadding=20:)
(:cellnr:)
%center%%c%[+'''EL ÁLGEBRA'''+]

%c%'''Definición'''%%

%rframe%Attach:Matemática-HistoriaAlgebra.jpg%%El álgebra es la rama de las matemáticas que estudia las estructuras, las relaciones y las cantidades (en el caso del álgebra elemental). Es una de las principales ramas de la matemática, junto a la geometría, el análisis matemático, la combinatoria y la teoría de números.

La palabra «álgebra» es de origen árabe, deriva del tratado escrito por el matemático persa Muhammad ibn Musa al-Jwarizmi, titulado Kitab al-yabr wa-l-muqabala (que significa "Compendio de cálculo por el método de completado y balanceado"), el cual proporcionaba operaciones simbólicas para la solución sistemática de ecuaciones lineales y cuadráticas. Etimológicamente, la palabra «álgebra», proviene del árabe y significa "reducción".

%c%'''Álgebra elemental'''%%

El álgebra elemental es la forma más básica del álgebra. A diferencia de la aritmética, en donde sólo se usan los números y sus operaciones aritméticas (como +, &#8722;, ×, ÷), en álgebra los números son representados por símbolos (usualmente a, b, c, x, y, z). Esto es útil porque:

--->%c%'''1.'''%% Permite la formulación general de leyes de aritmética (como a + b = b + a), y esto es el primer paso para una exploración sistemática de las propiedades de los números reales.
--->%c%'''2.''' %%Permite referirse a números "desconocidos", formular ecuaciones y el estudio de cómo resolverlas.
--->%c%'''3.''' %%Permite la formulación de relaciones Funcionales.

%c%'''Historia'''%%

%lframe%Attach:Matematica-HistoriaAlgebra2.jpg%%Si bien la palabra álgebra viene del vocablo árabe (al-Jabr, &#1575;&#1604;&#1580;&#1576;&#1585;), sus orígenes se remontan a los antiguos babilonios, que habían desarrollado un avanzado sistema aritmético con el que fueron capaces de hacer cálculos en una forma algebraica. Con el uso de este sistema fueron capaces de aplicar las fórmulas y soluciones para calcular valores desconocidos. Este tipo de problemas suelen resolverse hoy mediante ecuaciones lineales, ecuaciones de segundo grado y ecuaciones indefinidas. Por el contrario, la mayoría de los egipcios de esta época, y la mayoría de la India, griegos y matemáticos chinos en el primer milenio antes de Cristo, normalmente resolvían tales ecuaciones por métodos geométricos, tales como los descritos en la matemática Rhind Papyrus, Sulba Sutras, Elementos de Euclides, y los Nueve Capítulos sobre el Arte de las Matemáticas. El trabajo geométrico de los griegos, centrado en las formas, dio el marco para la generalización de las fórmulas más allá de la solución de los problemas particulares de carácter más general, sino en los sistemas de exponer y resolver ecuaciones.

Las mentes griegas matemáticas de Alejandría y Diofanto siguieron las tradiciones de Egipto y Babilonia, pero el libro Arithmetica de Diophantus está en un nivel mucho más alto. Más tarde, los matemáticos árabes y musulmanes desarrollaron métodos algebraicos a un grado mucho mayor de sofisticación. Aunque los babilonios y Diophantus utilizaron sobre todo los métodos especiales ad hoc para resolver ecuaciones, Al-Khowarizmi fue el primero en resolver ecuaciones usando métodos generales.

La palabra "álgebra" se refiere a la transposición y Cálculo de la Reducción de un libro escrito por el matemático persa islámico, Muhammad ibn Musa Al-Khw&#257;rizm&#299; (considerado el "padre del álgebra"), en 820. La palabra Al-Jabr significa "reducción". El matemático helenístico Diophantus ha sido tradicionalmente conocido como el "padre del álgebra", pero en tiempos más recientes, hay mucho debate sobre si al-Khwarizmi, que fundó la disciplina de Al-Jabr, título que se merece su lugar. Los que apoyan a Diophantus apuntan al hecho de que el álgebra que se encuentra en Al-Jabr es algo más elemental que el que se encuentra en el álgebra Arithmetica y que Arithmetica es sincopada mientras que Al-Jabr es totalmente retórica. Los que apoyan el punto de Al-Khwarizmi se basan sobre el hecho de que presenta los métodos de "reducción" y "equilibrio" (la transposición de términos restará al otro lado de una ecuación, es decir, la cancelación de términos a ambos lados de la ecuación), al cual el término Al-Jabr se refería originalmente, y que dio una explicación exhaustiva de la solución de ecuaciones cuadráticas, apoyada por las pruebas geométricas, mientras que el tratamiento de álgebra como una disciplina independiente en su propio derecho. Su álgebra ya tampoco trataría "con una serie de los problemas por resolver", sino con una "exposición que empieza con lo primitivo en el que las combinaciones deben dar todos los posibles prototipos de ecuaciones, que en adelante explícitamente constituyen el verdadero objeto de estudio".

El matemático persa Omar Khayyam desarrolló la geometría algebraica y encontró la solución geométrica de la ecuación cúbica. Otro matemático persa, Sharaf Al-Din al-Tusi, encontró la solución numérica y algebraica a diversos casos de ecuaciones cúbicas; también desarrolló el concepto de función. Los matemáticos indios Mahavirá y Bhaskara II, el matemático persa Al-Karaji, y el matemático chino Zhu Shijie, resolvieron varios casos de ecuaciones de grado tres, cuatro y cinco, así como ecuaciones polinómicas de orden superior mediante métodos numéricos.

Otro acontecimiento clave en el desarrollo del álgebra fue la solución algebraica de las ecuaciones cúbicas y cuárticas, desarrollado a mediados del siglo XVI. La idea de un factor determinante fue desarrollada por el matemático japonés Kowa Seki en el siglo XVII, seguido por Gottfried Leibniz diez años más tarde, con el fin de resolver sistemas de ecuaciones lineales simultáneas utilizando matrices. Gabriel Cramer también hizo un trabajo sobre matrices y determinantes en el siglo XVIII. El álgebra abstracta se desarrolló en el siglo XIX, inicialmente centrada en lo que hoy se conoce como teoría de Galois y en temas de la constructibilidad.

(:tableend:)
>><<
Líneas añadidas 3-4:
Pertenece a la categoría: {$:tags}
----
Líneas añadidas 1-3:
(:tags:[[!Matemáticas]]:)
(:title Algebra:)
Historia del Algebra